Scheduling Switch-Mode Power Supply Noise for Real-Time Systems
نویسنده
چکیده
A Switch-Mode Power Supply (SMPS) is invaluable in its ability to efficiently convert energy, which allows digital logic circuits to operate at the most efficient voltage based upon power and timing parameters, saving power and energy. However, an SMPS introduces noise into the system. Some real-time computing systems contain hardware resources that are rivalrous in nature. These are groups of resources that create or are sensitive to noise − Switch Mode Power Supply (SMPS) and an Analog to Digital Converter (ADC), for example. This paper presents Rivalrous Hardware Scheduling (RHS), a technique that utilizes real-time scheduling concepts for controlling the run-times of such rivalrous hardware via a software scheduler in order to reduce interference among them. As part of RHS, we propose an energy aware scheduling technique, called the Make And Take (MAT) scheduling model, which (1) controls the activity of the SMPS and (2) schedules the tasks based on the total energy in the system in relation to whether they produce or consume energy. We demonstrate and prove the concept of RHS using MSP430-based low-power embedded nodes. By implementing a processor controlled SMPS on these nodes, we study the negative impact of adding an SMPS in the system and show how it can be overcome by using the principles of RHS. Keywords-rivalrous; interference; hardware scheduling; processor controlled SMPS; energy aware scheduling;
منابع مشابه
Low Dropout Based Noise Minimization of Active Mode Power Gated Circuit
Power gating technique reduces leakage power in the circuit. However, power gating leads to large voltage fluctuation on the power rail during power gating mode to active mode due to the package inductance in the Printed Circuit Board. This voltage fluctuation may cause unwanted transitions in neighboring circuits. In this work, a power gating architecture is developed for minimizing power in a...
متن کاملSecond Order Sliding Mode Observer-Based Control for Uncertain Nonlinear MEMS Optical Switch
This paper studies theuncertain nonlinear dynamics of a MEMS optical switch addressing electrical, mechanical and optical subsystems. Recently, MEMS optical switch has had significant merits in reliability, control voltage requirements and power consumption. However, an inherent weakness in designing control for such systems is unavailability of switch position information at all times due to t...
متن کاملCircuit-level Design of a Power Supply Unit with Extra Low-noise Output for Portable Integrated SoCs
Switch-mode voltage regulators are considered as the dominant choice for low-power integrated power supplies. Employing the advantages of a switch-mode voltage regulator in 0. 18μm CMOS technology, a power supply has been designed for a complete System-on-Chip (SoC). While offering enough drive capability for the entire system, the supply provides an extra highly-regulated output for noise-sens...
متن کاملCoordinated Planning and Scheduling of Electricity and Natural Gas Systems
In this paper we propose a model for coordinated planning of power and natural gas systems, as a part of electricity supply chain. This model takes into account costs and constraints of both systems, and with hiring simplifications and linearization methods transforms initially nonlinear formulation to a mixed integer linear programming (MILP) problem. Natural gas would be assumed steady state,...
متن کاملOptimal Scheduling of CHP-based Microgrid Under Real-Time Demand Response Program
Microgrid (MG) is considered as a feasible solution to integrate the distributed energy sources. In this paper, optimal scheduling of a grid-connected MG is investigated considering different power sources as combined heat and power (CHP) units, only power and heat generating units, and battery storage systems. Two different feasible operating regions are considered for the CHP units. In additi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010